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We study directional relationships—in the driver-responder sense—in networks of coupled nonlinear oscil-
lators using a phase modeling approach. Specifically, we focus on the identification of drivers in clusters with
varying levels of synchrony, mimicking dynamical interactions between the seizure generating region �epileptic
focus� and other brain structures. We demonstrate numerically that such an identification is not always possible
in a reliable manner. Using the same analysis techniques as in model systems, we study multichannel electro-
encephalographic recordings from two patients suffering from focal epilepsy. Our findings demonstrate that—
depending on the degree of intracluster synchrony—certain subsystems can spuriously appear to be driving
others, which should be taken into account when analyzing field data with unknown underlying dynamics.
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I. INTRODUCTION

Synchronization was initially described by Huygens as
early as in the 17th century �1�. More recent developments in
the theory of dynamical systems has led to numerous inves-
tigations of these phenomena �2–10�. It is now well-known
that interactions between dynamical systems play an impor-
tant role in numerous fields of the physical sciences such as
electronics �11–13�, laser physics �14–16�, solid state physics
�17�, plasma physics �18�, communication �19,20�, or in con-
trol theory �21,22�. Furthermore, synchronization has been
observed in numerous biological systems. Two well-known
examples are the human cardiorespiratory system �23� and
the flashing of fireflies �24�. In particular, synchronization
plays an important role on a variety of spatial as well as
temporal scales in one of the most challenging dynamical
systems in nature, namely, the human brain �for an overview,
see, e.g., �25,26� and references therein�.

The multitude of observed synchronization phenomena
has led to the proposition of a number of different frame-
works for their description. In the most simple case of com-
plete synchronization the systems’ states become identical.
This concept can be extended to the case of lag synchroni-
zation where the states of the systems coincide if one is
shifted in time �27�. Phase synchronization is a relatively
new notion that extended the classical notion of synchrony
understood as phase and frequency locking to the case of
chaotic systems �28�. A completely different approach was
used to introduce the framework of generalized synchroniza-
tion �7,29� for the case when the states of the systems are
related through some function that maps the state spaces onto
each other.

When investigating synchronization phenomena between
dynamical systems, the analysis can be divided into two
main aspects. The first question is whether coupling is

present between the systems and how strong it is, while the
second one relates to the causal relationships between the
systems, i.e., the direction or asymmetry of the coupling.
Both strength and direction cannot be viewed in a completely
independent manner �e.g., in the case of complete synchro-
nization where it is not possible to detect any directionality
in the coupling, even if it is strictly unidirectional�. While a
number of time series analysis techniques have been pro-
posed that aim at investigating either the strength �30–33� or
the direction �34–42� of interactions, studies that take into
account both aspects are notable exceptions �42,43�.

A further question of great interest that was addressed in
recent studies �44–49� is whether bivariate time series analy-
sis techniques are suited to study global interactions in mul-
tivariate data. In the simple case of two systems, the detec-
tion of interactions between them is straightforward to
interpret. In contrast, when three or more �sub�systems are
involved, the situation becomes more complicated. Consider
a driving system D and two responding systems R1 and R2.
Let, on the one hand D and R1 be synchronized and, on the
other hand, D and R2 be synchronized as well. In this situa-
tion, R1 and R2 may show synchronized behavior although
no coupling is present between them. It is clear that similar
difficulties arise when investigating causal relationships.
Consider the case when D and R1 are so strongly coupled
that they show synchronized behavior, while a weaker yet
significant coupling is present between D and R2, in the
sense that the driving is detectable. In that case, not only D
but R1 may also wrongly be interpreted as driving R2. From
these considerations arises naturally the question to what ex-
tent the detectability of driver-responder relationships in net-
works of dynamical systems is affected by the strength of the
involved interactions. Different studies have already revealed
that this detectability is closely related to the level of syn-
chrony between systems �37,50�. As a consequence, it has
been proposed that results should be interpreted with care if
the level of synchrony between systems, which is usually
quantified by some measure, exceeds a critical threshold
�51�. When studying directionality in time series from sys-
tems with unknown underlying dynamics, it is of great im-
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portance to know whether the interplay between the global
level of synchrony and the strength of driving only limits
detectability, or whether it may also lead to spurious detec-
tions of driving. We here address this issue by analyzing time
series from model systems and electroencephalographic time
series from epilepsy patients.

This paper is organized as follows. In Sec. II, we briefly
describe two bivariate approaches from time series analysis,
namely, the mean phase coherence �33� and the directional-
ity index �37� as measures for the strength and the direction
of interactions, respectively. From the examples we men-
tioned, it is clear that the problem is of principal nature and
independent of the mathematical framework. We thus restrict
ourselves to the analysis of phase dynamics. In Sec. III, we
introduce the model systems used and present our findings.
We show that for certain asymmetrical coupling parameters,
spurious driving of oscillators that are coupled to driving
subsystems can be detected. We further demonstrate to what
extent this behavior is dependent on the strength of the syn-
chronization with the drivers and provide a method to avoid
misinterpretations when analyzing systems with unknown
dynamics. In Sec. IV, we present findings from analyzing
time series of brain electrical activity recorded in patients
with focal epilepsy. We finally discuss our results in the con-
cluding section.

II. METHODS

A. Mean phase coherence

The mean phase coherence �33� is a measure for the
strength of the synchronization between two dynamical sys-
tems. It is derived from the phase locking condition that is
fulfilled when the systems under investigation are synchro-
nized,

�m�1�t� − n�2�t�� � const, m,n � N , �1�

where �1�t� and �2�t� are the phase variables of systems S1

and S2, respectively. We here restrict ourselves to the case of
m=n=1 and derive the phase variables from an analytical
signal approach �52,53�. For time series of length N, the
degree of synchronization can be determined from the circu-
lar distribution of the measured phase differences ����j�
=�1�j�t�−�2�j�t�� j=1,. . .,N using the mean phase coherence
R,

R = � 1

N
�
j=1

N

exp i���j�� , �2�

with �t denoting the sampling interval. R is confined to the
interval �0,1� where R=1 indicates fully synchronized sys-
tems.

B. Directionality index

The directionality index �37� as a measure for the direc-
tion of interactions between two dynamical systems is based
on modeling the evolution of the unwrapped phase time se-
ries ��1,2�j�t�=�1,2

�j� � j=1,. . .,N of systems S1 and S2. The phase
increments ��1,2�j�=�1,2

�j+��−�1,2
�j� � j=1,. . .,N−� over some fixed

time � are considered to be generated by unknown two-
dimensional maps,

�1,2�j� = F1,2��1,2
�j� ,�2,1

�j� � + �1,2, �3�

with the random terms �1,2 representing noisy perturbations.
This rather intuitive approach does not require explicit
knowledge of the dynamics governing the systems. This is of
great importance when studying field data, since there are
often no realistic models available, which would allow a
more reliable estimation of strength and direction of cou-
pling �see, e.g., Refs. �43,54��. We followed Ref. �50� and
used �=min�T1 ,T2�, T1 and T2 being the periods of oscilla-
tion of the systems S1 and S2, respectively. These maps can
be approximated using finite Fourier series

F1,2��1,2,�2,1� = �
k,l

A1,2
�kl� exp�ik�1,2 + il�2,1� . �4�

The coefficients A1,2
�kl� are obtained by solving the linear least-

squares problems F1,2�F1,2, thus obtaining estimates for the
deterministic parts of the maps. We followed Ref. �37� and
used the following terms: �l��3 for k=0, �k��3 for l=0, and
k= l=1.

The influence of the systems on each other are now quan-
tified by terms c1,2 which are defined as

c1,2
2 = 	

0

2	 	
0

2	 
 �F1,2

��2,1
�2

d�1d�2. �5�

The directionality of the coupling between the systems is
quantified as

d�1,2� =
c2 − c1

c1 + c2
. �6�

d�1,2� is expected to vary between 1 for unidirectional cou-
pling with S1 as the driver and −1 for the opposite case.
d�1,2�=0 is expected for symmetric bidirectional coupling.

Since we study networks of coupled dynamical systems
we substitute R�i,j� for R and d�i,j� for d�1,2� throughout the
remainder of this paper.

III. APPLICATION TO MODEL SYSTEMS

Our aim is to evaluate the traceability of directional cou-
pling in systems with unknown underlying dynamics. A well-
known example for such a system is the human brain, in
which high levels of synchrony can be observed between
structurally similar brain regions. Since directionality cannot
be detected in fully synchronized systems �37,50�, an impor-
tant question is to what degree directional coupling can be
detected in the human brain given that neighboring structures
already exhibit a high level of synchrony. To this end we
here study systems with nearest-neighbor couplings that al-
low one to simulate clusters of interacting oscillators with
different levels of intercluster and intracluster synchrony.

We here used a network of 20 diffusively coupled Rössler
oscillators �55� for our simulations, each of which obeys the
following equations of motion:

ẋ�k� = − 
�k�y�k� − z�k� + �C
�k� + �D

�k�,

OSTERHAGE et al. PHYSICAL REVIEW E 77, 011914 �2008�

011914-2



ẏ�k� = 
�k�x�k� + 0.165y�k�,

ż�k� = 0.2 + z�k��x�k� − 10� , �7�

with k=1, . . . ,20 denoting the different oscillators Xk with
frequencies 
�k�, and bidirectional and unidirectional cou-
pling terms �C

�k� and �D
�k�, respectively. We divided the network

into two clusters C1= �X1 , . . . ,X10
 and C2= �X11, . . . ,X20
 of
10 oscillators each. Within the clusters, neighboring oscilla-
tors are coupled bidirectionally with strength �C. In addition
we introduced two driving systems �X4 ,X5
 which we
coupled unidirectionally to all other oscillators with strength
�D. The setting is illustrated in Fig. 1. The coupling terms �C

�k�

and �D
�k� are given by

�C
�k� = ��C�x�k+1� − x�k�� , k = �1,5,11
 ,

�C�x�k−1� − x�k�� , k = �4,10,20
 ,

�C�x�k+1� + x�k−1� − 2x�k�� , otherwise,
�

�D
�k� = �D�x�4� + x�5� − 2x�k�� . �8�

The global behavior of the network is thus controlled by the
two parameters �D and �C. This allows us to investigate the
detectability of directional coupling �D for different levels of
local bidirectional coupling �C, which in turn can be used to
control the global degree of synchrony within the clusters.

The equations of motion were solved using a fourth-order
Runge-Kutta integration method with a step size of 0.05 and
a sampling interval �t=0.1. Initial conditions were randomly
chosen in the state space near the Rössler attractor for each
oscillator and realization separately. In order to eliminate
transients, the first 104 iterations were discarded.

We focus on the applicability of time series analysis tech-
niques to field data and thus restrict ourselves to time series
consisting of 4096 data points. In order to eliminate fre-
quency effects when the systems are uncoupled, we ran-
domly chose the frequencies 
�k� from a Gaussian distribu-
tion with mean of 
̄=0.9 and standard deviation 
=0.1. In
another study �56� we have shown that the directionality in-
dex is affected by parameter mismatches of systems under
investigation. To avoid biased values of d�i,j� that are trivially
caused by different eigenfrequencies of the subsystems, we
generated N�=100 different solutions of the equations of

motion for each pair ��D ,�C
. For each realization �
=1, . . . ,N�, a new random set of frequencies 
�k� was gener-
ated in order to obtain mean values 
̄=0.9 not only across
the network but also for each oscillator separately.

For each realization �, we calculated both the mean phase
coherence and the directionality index for all possible pairs
of oscillators, thus obtaining matrices R�����C ,�D� , D���

���C ,�D�, �=1, . . . ,N� with entries Rij
���=R�i,j���C ,�D ,��,

Dij
���=d�j,i���C ,�D ,�� corresponding to combinations �Xi ,Xj
,

i , j=1, . . . ,20. Averaging over all realizations yielded matri-
ces

R��C,�D� =
1

N�
�
�=1

N�

R�����C,�D� ,

D��C,�D� =
1

N�
�
�=1

N�

D�����C,�D� . �9�

By definition R is symmetric while D is antisymmetric. Note
that we use the convention that Dij �0 is expected if Xj is
driving Xi.

To describe the synchronization phenomena on the scale
of the two clusters we define internal and external synchro-
nization strengths RI and RE �corresponding to intracluster
and intercluster synchronization, respectively�,

RI��C,�D� =
1

MI
�

��i, j�Xi � Cq,Xj � Cq, i � j
q=1,2

Rij��C,�D� ,

RE��C,�D� =
1

ME
�

��i,j�Xi�C1,Xj�C2

Rij��C,�D� . �10�

MI and ME are equal to the corresponding number of sum-
mands. RI��C ,�D� is the average mean phase coherence for
combinations of oscillators that are elements of the same
cluster and is thus expected to increase when �C is increased.
In contrast, RE��C ,�D� is the average mean phase coherence
for combinations of oscillators that belong to different clus-
ters and is expected to increase with increasing �D. Further-
more, we define the mean local directionality index of the
drivers, DD��C ,�D�, and the global intercluster mean direc-
tionality index, DG��C ,�D�,

DD��C,�D� =
1

MD
�

i�4,i�5
Di4��C,�D� + Di5��C,�D� ,

DG��C,�D� =
1

MG
�

��i,j�Xj�C1,Xi�C2,j�4,j�5

Dij��C,�D� .

�11�

In analogy to Eq. �10�, MD and MG equal the corresponding
number of summands. DD��C ,�D� is the average directional-
ity index for all possible combinations of any of the two
drivers with responding oscillators and should thus increase
with increasing �D. DG��C ,�D� is the averaged directionality
index for all combinations of responders �Xi ,Xj
 with Xi�C1

and Xj �C2. DG��C ,�D��0 indicates a predominant driving

FIG. 1. Coupling scheme used in the presented work. The upper
and lower rows represent oscillators from cluster C1 �white, re-
sponders; black, drivers� and from cluster C2 �gray�, respectively.
Black and gray arrows symbolize unidirectional ��D� and bidirec-
tional ��C� couplings, respectively.
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of oscillators in C2 by oscillators in C1 while DG��C ,�D�
�0 would indicate the opposite situation.

The influence of �D on the dynamical behavior of the
network is shown in Fig. 2 for �C=0, i.e., when no interclus-
ter coupling is present and all 20 oscillators are driven by
oscillators X4 and X5. RI�0,�D��RE�0,�D� follows from the
fact that no cluster structures are present in this case. Since
RI�0,�D� and RE�0,�D� exhibit almost identical dependence
on �D, we only show the behavior of RI�0,�D� in Fig. 2�a�.
Low variances of RI�0,�D� and RE�0,�D� over the different
combinations of oscillators clearly indicates the same degree
of synchronization between all oscillators for different �D.

Figure 2�b� shows the different behaviors of DD�0,�D�
and DG�0,�D�. DG�0,�D��0 independently of �D. The low
variances over combinations of oscillators indicates that
Dij�0,�D��const for all �i , j
. The directionality index there-
fore correctly reflects the fact that there is symmetric cou-
pling present between the driven oscillators. From the course
of DD�0,�D� it is obvious that the directionality index d�i,j�

depends not only on the asymmetry of the coupling but also
on its absolute value. Starting at DD�0,�D�=0 for completely
independent systems, DD�0,�D� increases monotonically un-
til a maximum is reached at �D=0.08, which reflects the
growing influence of the drivers on the dynamics of the re-

sponders. However, for �D�0.08 a weakly synchronized
state is reached �RI�0,�D��const for �D�0.08�. At �D
�0.3 the oscillators become fully synchronized �RI�0,�D�
�1�. Consequently, the coupling direction cannot be de-
tected here. Note that the transition from the maximal value
of DD�0,�D� to DD�0,�D��0 is not abrupt but rather occurs
over a range of values of �D, reflecting the smooth adaption
of the responders to the drivers’ dynamics.

The dependencies of RI��C ,�D� and RE��C ,�D� on the
cluster coupling strength �C are shown in Fig. 3 for weak �a�,
intermediate �b�, and strong �c� driver coupling strengths �D.
For weak driving �Fig. 3�a�� no synchronization between C1
and C2 is observed, and RE��C ,�D� increases only slightly
when �C is increased. Accordingly, in the matrix
R�0.07,0.01� entries that correspond to combinations of os-
cillators from different clusters assume low and almost con-
stant values. In contrast, the intracluster synchronization
RI��C ,�D� increases substantially, with a high variance across
the different combinations of oscillators. Since nearest-
neighbor coupling is present, the mean phase coherence be-
tween neighboring oscillators is high while remote oscilla-
tors within one cluster remain independent and corre-
spondingly the mean phase coherence is low.

For intermediate driving �D �Fig. 3�b��, the variance of
RI��C ,�D� is clearly decreased when compared to the vari-
ances for small �D. This can be attributed to the fact that
synchronization between remote oscillators within one clus-
ter is increased through the increase of �D. Furthermore, the
increase of RE��C ,�D� is more pronounced since the clusters
are now more strongly coupled through the drivers. This is
reflected in the corresponding matrix R�0.065,0.03�: in con-
trast to Fig. 3�a�, increased values of Rij��C ,�D� are not only
observed within the clusters but also in combinations of os-
cillators from different clusters. Since entries Rij��C ,�D� that
correspond to intercluster combinations of oscillators only
depend on the global driving �D their variances are low when
compared to the variance of entries corresponding to intrac-
luster combinations.

A further increase of �D to 0.06 results in a globally syn-
chronized network for all but very low �C �Fig. 3�c��.
RI��C ,�D� and RE��C ,�D� are almost identical. As is shown in
the corresponding matrix R�0.1,0.06�, it becomes almost im-
possible to discriminate the clusters from each other.

We now turn to the dependencies of DD��C ,�D� and
DI��C ,�D� for the same pairs of control parameters ��C ,�D

�cf. Fig. 4�. For weak driving ��D=0.01, cf. Fig. 4�a��
DD��C ,�D� initially increases before it slightly decays to al-
most constant values ��C�0.08�. The initial increase can be
explained by an increasingly coherent driving from both X4
and X5. At first sight this appears contradictory since these
oscillators are only coupled through �D, which is constant.
However, an increase of the cluster coupling strength �C
causes the mean phase coherence between the drivers to in-
crease. The reason for this is that the drivers are indirectly
coupled to each other through the bidirectional coupling to
their nondriving nearest neighbors �Fig. 1�. For �C�0.08 a
considerably increased variance of DD��C ,�D� is observed.
Simultaneously an increase of DG��C ,�D� is seen with com-
paratively low variance. For an intermediate driving level
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FIG. 2. �Color online� Dependence of RI �a� and of DD and DG

�b� on the driver coupling strength �D for �C=0. Error bars denote
standard deviation over different pairs of oscillators.

OSTERHAGE et al. PHYSICAL REVIEW E 77, 011914 �2008�

011914-4



�D=0.03 �Fig. 4�b�� one observes similar dependencies on
�C, except that the initial increase of DD��C ,�D� becomes less
pronounced. Finally, for a strong driving level �D=0.06 �Fig.
4�c�� the initial increase completely disappears and a rapid
decay of DD��C ,�D� to values around zero is observed. In
contrast, DG��C ,�D� remains stable at values around zero.
This follows from the previously described phenomenon that
a detection of coupling direction is not possible in synchro-
nized systems �cf. Fig. 4�c��. Even more remarkable is the
increase of DG��C ,�D� for weak and intermediate coupling. If
the dynamics were unknown this would suggest that C2 is
globally driven by C1, although in this case only two oscil-

lators within C1 are driving the other oscillators contained in
both C2 and C1. In order to investigate this in a more detailed
manner we show matrices D��C ,�D� for �D=0.03 and in-
creasing �C in Fig. 4�d�. For low values of the cluster cou-
pling strength ��C= �0,0.015
� X4 and X5 are correctly iden-
tified as driving all other systems. For �C=0.04 a slight
overall increase is observed in the apparent driving of C2 by
C1 �lower left corner of the corresponding matrix� while X4
and X5 can still clearly be identified as the main driving
systems. However, when �C is increased further, a broaden-
ing of the apparent driving region is observed, i.e., oscillators
coupled to the drivers through �C are spuriously identified as

FIG. 3. �Color online� Left-hand side: Dependence of RI��C ,�D� and RE��C ,�D� on �C for weak ��D=0.01 �a��, intermediate ��D=0.03
�b��, and strong ��D=0.06 �c�� driving. Error bars denote standard deviation over different pairs of oscillators. Right-hand side: For each case,
an exemplary matrix R��C ,�D� is shown for a cluster coupling strength of �C=0.07 �a�, �C=0.065 �b�, and �C=0.1 �c�, respectively.
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additional drivers. As an example, for �C=0.095 a structure
consisting of at least four oscillators �X3 ,X4 ,X5 ,X6� appears
to be driving the remaining systems in both clusters. For
�C�0.015 a state is reached when the whole cluster C1 ap-
pears to drive C2 �lower right-hand matrix�.

Spurious driving can also be observed for higher driving
coupling strength �D. As shown in Fig. 4�e�, a broadening of
the driving region can be observed here as well. However,
the detected driving is far less pronounced since the oscilla-
tors are synchronized at high values of �D and �C. The broad-
ening is thus paired with a lowering of the corresponding
values of Dij. Consequently, only a weak driving can be de-

tected for �C=0.1. For �C�0.35 no directional coupling can
be detected.

Our findings from model systems thus suggest that it is
important to check the global level of synchronization �using
the mean phase coherence or a comparable measure for the
strength of interaction� to avoid misinterpretations when ana-
lyzing systems with unknown dynamics. Results indicating
that certain parts of a network are driving other parts should
be interpreted with care if intermediate values of the mean
phase coherences are observed. If no driving is measured, an
inspection of the mean phase coherences between the differ-
ent systems could help to clarify whether indeed no driving

FIG. 4. �Color online� Left-hand side: Dependence of DD��C ,�D� and DG��C ,�D� on �C for weak ��D=0.01 �a��, intermediate ��D

=0.03 �b��, and strong ��D=0.06 �c�� driving. Error bars denote standard deviation over different pairs of oscillators. Right-hand side: For the
intermediate �d� and strong �e� drivings, representative examples of corresponding matrices D��C ,�D� are shown.
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is present or whether driving may possibly be present, but
remained undetected because the systems are strongly syn-
chronized. Note, that more complex cases may occur where
different synchronized states coexist �57�. For such cases, the
proposed straightforward analysis of the global level of syn-
chrony may not be appropriate.

IV. APPLICATION TO FIELD DATA

Synchronization phenomena play an important role in the
human brain. The applicability of methods for the detection
of the strength of interactions between different brain regions
using electroencephalographic �EEG� time series has been
demonstrated in a number of cases, yielding meaningful re-
sults for such different problems as the detection of changes
in the dynamics of the brain before epileptic seizures
�33,58–61� or the identification of the seizure generating
area of the brain �epileptic focus� �56�. Directionality mea-
sures have mostly been applied to investigate the propaga-
tion of epileptic seizures from the focal area to other brain
regions �62–66�, but also for the identification of the epilep-
tic focus �67�.

An important and yet unanswered question in epileptol-
ogy is whether pathological interactions between the epilep-
tic focus and remote areas can be identified during seizure-
free periods from patients with focal epilepsy. The detection
of such interactions in the driver-responder sense would help
to better understand the epileptogenic process. In addition,
identification of the epileptic focus as a driving region could
improve the exact delineation and selection of the brain area
to be resected in epilepsy surgery. Thus, a question of par-
ticular interest is whether pathological interactions are lo-
cally restricted to the immediate surroundings of the focus or
whether they also involve remote brain regions. Our findings
from model systems reported above indicate that a localiza-
tion of the epileptic focus by means of directional interac-
tions could be limited to cases where the degree of synchro-
nization within the network is sufficiently low to avoid the
observed broadening of the apparent driving region.

In the following we present findings obtained from inves-
tigating synchronization phenomena in intracranial EEG re-
cordings from two patients with mesial temporal lobe epi-
lepsy. In both patients, magnetic resonance imaging revealed
a sclerosis of the left hippocampus. Invasive recordings of
seizure onsets confirmed this area to be the seizure onset
zone. After neurosurgical resection of the hippocampal for-
mation, both patients were seizure free, so in both cases we
can assume that the focus was located within the resected
region. The EEG was recorded prior to surgery via intrahip-
pocampal depth electrodes �cf. Fig. 5�, each equipped with
10 cylindrical contacts �length, 2.5 mm; intercontact dis-
tance, 4 mm�, using an average common reference. These
electrodes were implanted stereotactically in the medial tem-
poral lobes. EEG recordings were performed at a sampling
frequency of 173.61 Hz using a 12 bit analog to digital �A/D�
converter, and the data was bandpass filtered from 0.85 to 85
Hz �12 dB/oct�. All patients had signed informed consent
that their clinical data might be used an published for re-
search purposes, and the study protocol had previously been

approved the local ethics committee. An exemplary record-
ing from patient 1 is shown in Fig. 6. We analyzed record-
ings from the seizure-free �interictal� period �patient 1, three
recordings of different duration, range 40–60 min; patient 2,
two recordings of 30 and of 119 min�. The data were chosen
such that each recording started at least 1 hour after a seizure
and ended at least 4 h before a seizure.

We performed the following steps of analysis. As a com-
promise between the statistical accuracy for the calculation
of the measures and the approximate stationarity of the time
series, we divided the data into nonoverlapping segments of
23.6 s duration �corresponding to 4096 data points�. This
allowed us to calculate both the mean phase coherence and
the directionality index for each combination of pairs of elec-
trodes �210 nonredundant pairs per patient� in a moving win-
dow fashion with subsequent temporal averaging of the ob-
tained measure values over these windows. We thus obtained
a mean phase coherence matrix Ri and a directionality matrix
Di �i=1,2� for each patient. Figure 7 shows the two matrices
for patient 1. The directionality matrix indicates that the
structure recorded at the fourth and fifth electrode in the left
hemisphere is driving both the left and right mesial temporal
regions of the brain. Clinical evaluation of the EEG at sei-
zure onset �not shown here� confirmed the first signs of sei-
zure activity to be restricted to these two contacts. The driv-
ing region thus apparently corresponds to the epileptic focus.
The mean phase coherence matrix for this patient indicates a
low global level of synchronization. Strong coupling appears
to be present only in EEG data recorded at neighboring con-
tacts.

The mean phase coherence matrix for patient 2 �Fig. 8�
indicates high synchronization in both hemispheres so that
the two hemispheres can clearly be identified as separate
clusters. Like for patient 1, the directionality matrix indicates
a driving region located within the focal hemisphere. How-
ever, it is not possible to clearly circumscribe the driving
region since it extends over a structure that was recorded
over a range of contacts in the left hemisphere �L5 to L10�.
For this patient, clinical evaluation of the EEG did not reveal
a clearly circumscribed focal area. Here, the first signs of
seizure activity were spread over the contacts L5 to L9, in
compliance with their high synchronization. According to
our findings from model systems �see Sec. III�, it is not pos-
sible to decide whether there is indeed a broad driving region
within the focal hemisphere, or whether there is local driving
which appears broadened due to high coupling between the
recording sites.

FIG. 5. Schematic view of bilateral intrahippocampal depth
electrodes, each equipped with 10 cylindrical contacts of a nickel-
chromium alloy. Left-hand side, axial view; right-hand side, sagittal
view.
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V. CONCLUSION

The combined investigation of the directionality and in-
teraction strength in networks of dynamical systems has re-
vealed that separate analysis of these quantities may lead to
spurious inference about underlying driving structures. For a
coupled network of Rössler oscillators, we have demon-
strated that an increasing level of local coupling strength
renders a reliable detection of drivers increasingly difficult.
Under such conditions, not only the detectability of coupling
direction is impaired for high coupling strengths. In addition,
for intermediate coupling strengths an apparent broadening
of the driving region may be observed that may spuriously
be interpreted as a driving subsystem. It should be empha-
sized that this spurious detection of driving may not be re-
solved using, e.g., confidence levels based on bootstrapping
with surrogate techniques �41,68–70�. This is because the
observed “‘bias”’ is not only caused by the intrinsic statisti-
cal properties �e.g., the mean and variance� of the measures,
which in turn depend on intrinsic properties of the systems as

well as on the length of the time series. Instead, the crucial
bias we investigate here is introduced by the involved cou-
plings, and in practice, one may thus have to deal with a
superposition of an intrinsic and an induced bias. Taking into
account the strength of an interaction and the spectral char-
acteristics of the signals may help to interpret the confidence
levels obtained with surrogate techniques.

When investigating directional relationships in EEG time
series from two epilepsy patients we observed driving re-
gions in the focal hemisphere. The apparently broad driving
region in one patient could possibly be caused by the high
synchronization within the focal hemisphere. In this case, a
misinterpretation through an exclusive analysis of the cou-
pling direction could be avoided by including the strength of
the coupling in the analysis. An important question is
whether our findings can be attributed to the specific analysis
techniques that were applied here, or whether they point to a
principle limitation of the measurability of directionality. It

FIG. 8. �Color online� Mean phase coherence matrix R2 �right�
and directionality matrix D2 for patient 2. Note that only nine re-
cording sites are present in the right hemisphere since the sixth
contact of that electrode was not functional.
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FIG. 6. Exemplary EEG recording from the seizure-free interval from patient 1. Upper part, recording from the left medial temporal lobe;
lower part, recordings from the right medial temporal lobe. See Fig. 7 for electrode contact labeling.

FIG. 7. �Color online� Mean phase coherence matrix R1 �right�
and directionality matrix D1 for patient 1.
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has previously been discussed in Ref. �71� for the case of
three coupled oscillators that applying bivariate techniques to
pairs of time series taken from a multichannel recording does
not necessarily allow one to identify the relevant information
in the full data set. This may be achieved by multivariate
time series analysis techniques �44–49� but it remains to be
shown whether these techniques allow one to resolve inter-
actions in systems where a driver is strongly coupled to one
of two responders and weakly coupled to the other.
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